Relevance of Grooved Nmosfets in Ultra Deep Submicron Region in Low Power Applications
نویسندگان
چکیده
To manage the increasing static leakage in low power applications, solutions for leakage reduction are sought at the device design and process technology levels. In this paper, 90nm, 70nm and 50 nm groovedgate nMOS devices are simulated using Silvaco device simulator. By changing the corner angle and adjusting few structural parameters, static leakage reduction is achieved in grooved nMOSFETS in ultralow power applications. The simulation results show that leakage contributing currents like the subthreshold current, punchthrough current and tunneling leakage current are reduced. The oxide thickness can be increased without increase in the gate induced drain leakage current, and ON-OFF current ratio is improved and maintained constant even in the deep submicron region. This study can be helpful for low power applications as the static leakage is reduced drastically, as well as be applicable to high speed devices as the ON current is maintained at a constant value. The results are compared with those of corresponding conventional planar devices to bring out the achievements of this work.
منابع مشابه
Viability of Low Temperature Deep and Ultra Deep Submicron Scaled Bulk nMOSFETs on Ultra Low Power Applications
Chip cooling is an attractive option for leakage control and power as well as thermal management of high performance ICs. Subthreshold leakage being the main leakage contributor in nanoscale CMOS, it rapidly increases with scaling due to continuous reduction in the supply voltage and is highly temperature sensitive. The authors in this work investigate Si bulk nMOSFETs using both constant volta...
متن کاملEnhanced Leakage Control in Scaled 45nm nMOS Devices using SiO2 and Si3N4
Gate-leakage reduction is the key motivation for the replacement of SiO2 with alternative gate dielectrics. 45nm gate length scaled grooved and bulk nMOSFETs are evaluated to bring out the most compatible and power saving dielectric option using Si3N4 and SiO2 using Silvaco ATLAS device simulator. At the scaled thickness, SiO2 controls the leakage better than Si3N4, whereas at increased thickne...
متن کاملUltra-Low-Energy DSP Processor Design for Many-Core Parallel Applications
Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...
متن کاملUltra Low Power Symmetric Pass Gate Adiabatic Logic with CNTFET for Secure IoT Applications
With the advent and development of the Internet of Things, new needs arose and more attention was paid to these needs. These needs include: low power consumption, low area consumption, low supply voltage, higher security and so on. Many solutions have been proposed to improve each one of these needs. In this paper, we try to reduce the power consumption and enhance the security by using SPGAL, ...
متن کاملA Simple General-purpose I-V Model for All Operating Modes of Deep Submicron MOSFETs
A simple general-purpose I-V model for all operating modes of deep-submicron MOSFETs is presented. Considering the most dominant short channel effects with simple equations including few extra parameters, a reasonable trade-off between simplicity and accuracy is established. To further improve the accuracy, model parameters are optimized over various channel widths and full range of operating v...
متن کامل